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Abstract 
Installation of optical cables in ducts by blowing (with air) or by 
floating (with water) are widely used and well known techniques. 
However, some mysteries remain, e.g. what is the effect on the 
installation length when a (HDPE) duct is hanging, fixed with 
regular intervals (spans), and how does this depend on the span? In 
this paper an analysis is made. It is found that for constant 
temperature the blowing length is hardly affected for a span of 2 m 
or less (for 32/26 mm duct, span scaling proportionally to duct 
diameter) and when the duct is hung under tension this is also true 
for larger spans. But, when the duct is in an environment with 
varying temperatures (e.g. under bridges) a span of 1 m can already 
be critical (blowing length drops by ~1/3rd). The initial tension only 
helps a bit here. Creep of the duct and cable sag also have an effect 
and are treated qualitatively. Tests are proposed to check all details. 
Floating the cable helps to reach longer installation lengths, also 
because it may be used to cool the duct. 

Keywords: Cable; optical; duct; installation; blowing; floating; 
fixed; clamped; regular intervals; span; bridges; temperature; 
cooling; tunnels; sea; lake, river; blast-weights. 

1. Introduction 
Optical cables are installed in ducts by blowing over > 3 decades. 
Impressive results have been obtained, 3.8 km in one blow by 
Trafikverket (Sweden 2015) [1] and even 5.3 km in one blow by EE 
Energia Engiadina (Switzerland 2019) [2]. With floating (water 
instead of air) even a longer distance has been reached, 12.4 km in 
one float by Nexans (Zurich, Switzerland 2019) [3]. Of course not 
too many bends shall be present in the trajectory and they may not 
be sharp. Also sections marked as straight might be critical: how 
straight is straight? Will undulations or micro-undulations be 
present? The latter may occur when bundles of microducts (outside 
diameter <16 mm), are direct-buried into the ground, in trenches, 
then filling up and compacting the soil, at the same time the cables 
filling up the microduct space for more than 75% in diameter [4]. 
Micro-undulations are not the subject of this paper, only natural 
(macro) undulations. Ducts will show such undulations when paid 
out from a reel. When the quality of the ducts is good and laying is 
done correctly (e.g. not pulling over the duct from a flat non-rotating 
reel) such undulations do not cause cable blowing or floating 
problems after plowing the ducts into the ground, laying them in 
trenches, gutters, in larger ducts or in tunnels. In this paper the effect 
on blowing and floating distance is studied of duct undulations 
caused by periodically fixing the duct by clamps, e.g. to tunnel 
walls, under bridges, or held in place at sea, lake or river bottoms by 
blast-weights. It is known that such periodical fixing sometimes 
causes problems, but no guidelines with underlying theory is known 
yet, at least not how it influences blowing distances. In Figures 1 
and 2 hanging ducts in tunnels are shown at CERN (blowing record 
of that time of 3.6 km [5]) and in Zurich (12.4 km floating record 
[3]), respectively, both with the duct hanging with span of 1.5 m. 

 
 

Figure 1. Duct hanging in tunnel of CERN, span 1.5 m. 
Here the (microduct) cable blowing record of that time 

of 3.6 km was reached. 

 

 
 

Figure 2. Duct hanging in tunnel in Zurich (Switzerland), 
span 1.5 m. Here the cable floating record of 12.4 km 

was reached. The cable came out with 50 m/min. 



A duct will sag between its clamping points by its weight. This 
sag is counter balanced by the stiffness of the duct and the axial 
(pre-) tensile force in the duct. A numerical calculation is done 
taking into account both counter effects. Temperature variations are 
also of influence. The result is a combination of amplitude and 
period of the duct undulations as a function of different parameters. 
Their effect will be evaluated on the blowing and floating distances, 
calculated with the software JetPlanner [6] (a summary of the theory 
will be given too). The effect of sag of the cable itself is in principle 
also of influence, just as creep of the duct. However, these effects 
are not taken into account in the calculations but evaluated 
qualitatively for different situations.  

2. Analysis 
It is analyzed what the effect is on the cable blowing and floating 
length when a duct is fixed with regular span, taking into account 
pre-tensioning and temperature effects. 

2.1 Hanging of Duct 
When a duct with stiffness Bd is hanging under its own weight (Wd 
per unit of length) between supports with intermediate distance d, 
the sag SdB (determined by the stiffness Bd of the duct) in the 
middle, in case no pulling forces are applied to the duct, is given 
by (A8) of Appendix A: 
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A duct with internal diameter Dd and external diameter OD will 
have the following weight Wd and stiffness Bd: 

 2 2

4d dW OD D g


    4 4

64d dB OD D E


         (2) 

Here ρ is the density (HDPE 0.94 g/cm3) and E the Young´s 
modulus (HDPE 0.8 GPa) of the duct. For a 32/26 mm duct a 
weight W of 2.52 N/m and a stiffness Bd of 23.2 Nm2 follows. 

The above calculation was for the situation that no pulling 
force is applied on the duct when installed. For large spans 
between the clamps the sag becomes very large, so it will be 
required to put some pulling force F on the duct. For the case of 
zero stiffness the sag SdF (determined by the force) of the duct 
then follows from (A9) of Appendix A: 
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When there is no clear dominancy of the effect of stiffness or 
tension, a numerical solution of (A5) is required, as is indicated in 
Appendix A. In Figure 3 the sag Sd is shown as a function of 
intermediate clamp distance d. For small d the stiffness is 
dominant, for large d tension takes over and limits further sag. 
The sag, including both stiffness and tension, will always stay 
below the blue SdB line (first following for small d) as well as 
below the red SdF line (eventually parallel to it for large d), see 
example of Figure 3. Note that thermal effects (expansion and 
shrinking, see further) will also induce tension effects.  

In Figure 4 the sag Sd is shown for different axial forces as a 
function of intermediate clamp distance d. Note that the span for a 
negative force F never fully reaches the buckling length b for that 
force (except for cable weight zero) as given by [4]: 
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This buckling length is 6.77 m and 9.57 m for a (pushing) force F 
of -20 N and -10 N, respectively. Due to the weight of the duct the 
buckling asymptote is reached at shorter distances, at 5.45 m and 
6.52 m, respectively (at much higher Sd than visible in Figure 4). 
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Figure 3. Sag Sd of the 32/26 mm duct as a function of 
span d for stiffness domination (SdB, no force) and for 
force (50 N) domination (SdF, zero stiffness). For both 

effects the numerical solution Sd of (A5) is given. 
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Figure 4. Sag Sd of the 32/26 mm duct as a function of 
span d for different forces. 

2.2 Temperature Effects 
When the temperature changes, the length of the duct will also 
change. This will cause a change in both sag and force. The 
difference in length of the hanging duct between initial hanging at 
temperature T0 and at temperature Ts during service must be 
known to calculate this.  

First the length Ld of the duct in a single duct span is 
calculated for small y´: 
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For the stiffness dominated situation, the length LdB of the duct 
can then be calculated using (A7):  
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Carrying out the integration and using (1) to write in terms of sag 
SdB gives: 
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For the force dominated situation, the length Ld on one span d 
follows from the catenary of [7], again for not too large y´, and 
can be written in terms of sag SdF using (3): 
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When comparing for the same sags SdF and Sd the lengths LdF and 
Ld, the latter by carrying out numerical integration, about the same 
length is found for the catenary. For the numerical example of the 
32/26 mm HDPE duct under a tensile force F of 50 N, having the 
same sags SdF and Sd of 140 mm for span d of 4.72 m, the lengths 
LdF and Ld of the catenaries are 0.24% and 0.22% longer than the 
span d, respectively. So, for the same span d and same sag Sd, the 
total length Ld is about the same for the force dominated and 
numerical situation. The relation between total length Ld and sag 
Sd will also be the same for both situations and follows from the 
general case of (8): 
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Compare this to (7) for the stiffness dominated situation, also not 
differing a lot (8/3 compared to 256/105). 

When for initial sag Sd0 at initial temperature T0 the total 
length is Ld0 and the force F0, the total length of the catenary will 
change to Ld1 and the force to F1 when the temperature changes to 
T1. The relation between Ld1 and Ld0 is given by: 
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Here αd is the thermal expansion coefficient (1.2∙10-4 K-1 for 
HDPE) and kd the spring constant of the duct, the latter given by: 
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For a 32/26 mm HDPE duct the value of kd will be 4.6∙10-6 N-1, 
i.e. for a force of 50 N the elongation would only be 0.023 %. It 
also follows that a temperature decrease of 20 °C under constant 
length would generate a force of 522 N, so temperature effects 
cannot be ignored. 

An example is given of a 32/26 mm HDPE duct, installed at 
30 °C (sunny day, black HDPE ducts will then readily get such a 
temperature or higher) with a span of 4 m under a tensile force of 
50 N. According to (A5) the sag of the duct will be 39.1 mm. The 
length of the duct in one span will then be 4.001 m. When the 
duct is cooled by 20 °C, pure shrinking would result in a new 
length of 3.991 m, shorter than the span, not possible of course. 

The force will also increase, elongating the duct. Iteratively a new 
balance of force and sag is found: try a force increase and 
calculate the duct length on one span (shall be higher than the 
span d) with (10). Next calculate the sag that would follow from 
this combination of force and span with (A5) and from that the 
duct length on one span with (9). Vary the force increase until this 
duct length is the same as the one directly obtained with (10). For 
this case a force increase of 469 N follows. The total duct length 
on one span here is 4.00004 m. This would follow directly from 
(10) for simultaneous cooling 20 °C and increasing the force with 
469 N from 50 N to 519 N. For this new force a sag of 7.7 mm 
follows with (A5) and from that again the same duct length 
4.00004 m from (10). So, the sag decreased considerably, from 
39.1 mm to 7.7 mm. Clearly cooling has a large effect on the sag! 

In Table 1 sags Sd are given for a 32/26 mm duct for different 
temperature changes ∆T and different initial forces F0, 3 tables for 
different spans d. When the equilibrium force F becomes negative 
(compressive) the sag Sd in Table 1 is indicated in blue. 

 

Table 1  Sags Sd (mm) for different spans d, different initial 
forces F0 and different temperature changes ΔT. 
 

d = 2 m 

ΔT (K) \ F0 (N) 10 20 50 100 200 500 1000 

-30 1.1 1.0 1.0 1.0 0.9 0.7 0.5 

-20 1.4 1.4 1.3 1.3 1.1 0.9 0.6 

-10 2.1 2.1 2.0 1.8 1.5 1.1 0.7 

0 4.3 4.2 3.7 3.2 2.4 1.5 0.9 

10 22.1 20.9 17.3 11.8 6.0 2.2 1.1 

20 46.1 45.4 43.1 39.0 29.8 4.9 1.5 

30 62.4 61.8 60.1 57.2 50.9 25.5 2.3 

 

d = 4 m 

ΔT (K) \ F0 (N) 10 20 50 100 200 500 1000 

-30 5.8 5.6 5.2 4.7 4.2 3.2 2.4 

-20 8.9 8.4 7.7 6.6 5.6 4.0 2.8 

-10 18.7 16.7 13.5 11.0 8.5 5.4 3.3 

0 61.8 53.9 39.1 26.9 16.7 7.7 4.1 

10 102 95.8 84.4 71.9 51.2 14.3 5.4 

20 131 127 118 109 93.8 42.0 8.0 

30 156 152 145 124 111 87.1 15.2 

 

d = 6 m 

ΔT (K) \ F0 (N) 10 20 50 100 200 600 1000 

-30 153 52.8 16.3 12.1 10.1 7.1 5.5 

-20 197 114 28.0 17.5 13.6 8.6 6.4 

-10 234 166 67.0 31.6 21.0 11.1 7.7 

0 266 208 127 77.2 43.8 15.6 9.6 

10 294 243 176 137 100 26.1 12.8 

20 321 274 216 184 155 60.7 19.2 

30 345 302 250 222 199 122 36.8 
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Figure 5. Example of Sag Sd as function of span d for 
tensile force 0 and 300 N on 30/26 mm duct during 

hanging and effect of temperature increase ∆T of 20 °C 
 

In Figure 5 an example is shown for the 32/26 mm duct 
which is initially hung with a tensile force of 0 N and 300 N, 
respectively. The sag Sd is shown as a function of the span d for 
these (initial) axial forces F and this is also done after a 
temperature increase of 20 °C for these cases (where F changes). 
Note how the yellow line (initial force 300 N, increased in 
temperature by 20 °C) changes from compressive to tensile force 
when crossing the blue line (initial force 0 N).  

It can be seen that the sag rapidly increases from a clamping 
length around 1 m. A sec force of 522 N to balance the 
temperature increase of 20 °C follows from (10) resulting in a 
buckling length of 1.32 m, as follows from (4). When buckling 
starts length is gained easily, no problem to create the 0.24% 
excess length needed according to (10), which is reached at a sag 
of 40 mm according to (9). The force drops, now below the 
buckling threshold. A new equilibrium is established, with a force 
of 484 N. The “missing” 38 N would according to (10) need 
0.018% excess length for which according to (9) a sag of 11 mm 
would be sufficient. But, this is already more than the free space 
of the cable in the duct. So, blowing length starts decreasing 
immediately when the span passes the buckling length belonging 
to the force created by the temperature increase. 

Note that the sag may become high when forces are 
compressive. So, installing at low temperatures brings the risk that 
upon heating the sag becomes so high that blowing distances are 
reduced considerably. The same risk occurs when due to creep in 
the cold season the ducts became longer, leading to blowing 
problems in the hot season. So, temperature variations might 
cause considerable sag also when the duct was installed in 
favorable conditions.  

2.3 Effect of Water 
When the cable is floated in with water the duct becomes heavier, 
increasing the sag. It might also affect the temperature of the duct, 
indirectly influencing the sag. The weight of the duct increases 
from 2.52 N/m (empty) to 7.73 N/m (with water). It is considered 
that the duct is empty before installation of the cable and the first 
water filling occurring during floating in the cable. Two situations 
are considered, same temperature during cable floating as during 
installation of the duct and a reduction in temperature of 20 °C 

during floating. The latter is more interesting to study than 
temperature increase, because this is a feature which can be used 
advantageously with floating. And temperature increase does not 
do a lot here, as the axial forces in the duct remain tensile, 
because of the extra stretching of the duct due to water loading. 

In Figure 6 the effect on the sag Sd of the duct from filling and 
cooling the duct with water is shown. The initial (empty) hanging 
conditions (same as in Figure 5) for 0 N and 300 N pre-tension are 
also shown as a reference. Clearly the sag increases after filling the 
duct with water. This effect becomes less when use is made of the 
cooling ability of the water flow. Better also install the duct initially 
with pre-tension. It is interesting to see what happens when there is 
no pre-tension and the duct is later cooled by 20 °C with the water 
flow. From (10) it follows that this is equivalent to a tensile force of 
522 N. This is the force seen at very small span. Increasing the span 
will let this force grow a little bit, because of the extra force from the 
weight of the duct span. The max force (0.5 N higher) is reached at a 
span of 1.6 m. After that the force goes down again, only 29 N left at 
a span of 8 m. This can be explained by the fact that there is enough 
“room” in the long (sagged) duct span to accommodate this small 
expanded length of only 0.24% for 20 °C temperature drop. 
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Figure 6. Example of Sag Sd as a function of span d for 
tensile force 0 N and 300 N on a 30/26 mm duct during 

hanging and how this is influenced by filling and 
cooling by ∆T of 20 °C with water  

2.4 Effect on Blowing and Floating Distances 
With blowing and floating the cable is installed with help of fluid 
drag forces, generated by injecting fluid under pressure in the 
duct. When the fluid is a gas (air) the technique is called blowing, 
when it is a liquid (water) it is called floating. To generate drag 
forces the fluid has to flow (much) faster than the cable, so no pig 
is used at the front end of the cable. Because friction caused by 
gravity is locally compensated by the fluid drag forces hardly any 
tensile force is built-up in the cable and, hence, the capstan effect 
is suppressed [6]. For this reason surprisingly long installation 
lengths can be reached while tensile forces on the cable remain 
low. With floating the distances reached are even longer because 
of buoyancy reducing the friction caused by gravity. Additional 
advantages (of fluid drag methods over pulling the cable) are that 
the installation is single step (no winch rope to be installed first) 
and done from a single location (no winch and personnel needed 
at other end of duct), making it the standard technique worldwide. 



Blowing and floating distances can be calculated using the 
theory of [6]. Here the (pushing) force build-up dFc/dx of a cable 
installed in a duct follows from: 
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Here f is the coefficient of friction, Fn the normal force between 
cable and duct, Wcsinα the force to bring the cable with weight Wc 
per unit of length uphill (slope α) and dFdrag/dx the drag force on 
the cable exerted by the fluid flow. Note that for floating the 
effective weight of the cable must be corrected for buoyancy. The 
normal force Fn is given by: 
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Here Fc is the axial (pushing) force in the cable,  the change in 
direction of the cable in the duct per unit of length (only vertical 
undulations caused by the sag Sd of the clamped duct considered 
here), WB the effect of the cable stiffness Bc in these undulations 
and Β a constant for the effect of buckling during pushing of the 
cable (which is zero in case of pulling): 
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Here Dc is the cable diameter. The effective (vertical) cable 
amplitude eff in the clamped duct with sag Sd is given by: 
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The drag force dFdrag/dx on the cable exerted by the fluid flow is 
given by: 
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Here pi is the fluid pressure at the entrance of the duct, pa the fluid 
pressure at the end, x the position in the duct and L the length of 
the duct (which is open at its end). 

Note that the cable stiffness friction WB grows very fast when 
the span d decreases (inversely proportional to d4). The sag Sd of 
the duct first grows proportional to d4 (duct stiffness dominated) 
but for larger d it grows with d2 (duct pulling force dominated), so 
there might be a window where a shorter span d gives more 
stiffness friction WB. On the other hand there is also a window 
with small d and Sd where the cable can find a straight path when 
not pushed too hard. Solving the differential equation (12) is the 
only way to find out which span d is best and how much effect 
there is on the blowing or floating distance L.  

2.5 Example with Blowing 
For a cable with diameter Dc of 20 mm the undulations in the 
32/26 mm duct are just not seen (sag of 6 mm and small pushing 
force Fc on cable) for a force zero on the duct when the span is 

2.15 m. For a duct pulling force of 300 N this is the case for a 
larger span of 3 m. However, when the temperature increases by 
e.g. 20 °C the sag increases to 49 mm (duct pushing force 222 N) 
and 51 mm (duct pushing force 56 N) for the 2.15 m and 3 m 
span, respectively. So, for cases where the hanging duct is 
exposed to outside environment the advantage of not seeing the 
undulations for the short span totally disappears! In this case the 
short span may only create extra cable stiffness friction. 

In Figure 7 the reduction of the blowing length is shown for 
the example of Figure 5 for the 20 mm cable, with weight Wc of 
3.2 N/m and stiffness Bc of 10 Nm2 and coefficient of friction f of 
0.08, blown with 12 bar and 500 N pushing force. First the effect 
on the blowing length is shown for the initial hanging situation 
(before the temperature rise). When no tensile force is applied on 
the duct the blowing length rapidly decreases after the sag 
becomes larger than the free space of the cable in the duct at a 
span d of 2.15 m. When a tensile force of 300 N is applied on the 
duct this reduction has almost totally vanished. However, creep 
will cause a reduction of this tensile force in time. It has not been 
analyzed in this paper how such creep causes reduction in 
blowing length when the cable is blown after some time after 
hanging the duct. 
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Figure 7. Example of blowing length L as a function of 
span d for a 20 mm cable in the 32/26 mm duct for the 

cases of Figure 5 

In Figure 7 the reduction of the blowing length is also shown 
for the example of Figure 5 after a temperature increase of 20 °C. 
It is not surprising that the rapid increase in the sag of the duct 
causes a very rapid decrease of the blowing length (accelerated by 
the fact that the first part of the rapid increase in sag the blowing 
length is still unchanged because of the free space of the cable in 
the duct). It is interesting to see that around a span d of 2 m (a bit 
earlier for initial force of 0 N during hanging) a local minimum is 
reached in the blowing length, recovering a bit for larger d and 
then not changing a lot anymore (still recovering for initial force 
of 300 N, slowly decreasing for initial force of 0 N, the latter 
approaching the value without temperature increase when thermal 
extension of the duct becomes small compared to excess length 
from the initial sag). 

2.6 Sag of the Cable 
Until now the sag of the cable itself was not considered. However, 
for comparable tensile force the sag in the cable is usually larger 
than that of the duct! For the example cable and duct the sag of 



the cable is about 3 times that of the duct for a force of 0 N for 
both. This means that the cable will not experience the stiffness 
friction as calculated in the previous section, but just follows the 
bottom of the undulating duct. But, the axial force in the cable is 
in no way coupled to the axial force in the duct. During blowing 
the axial force in the cable varies from compressive close to the 
cable feed side until tensile at the cable’s front length [6]. An 
important region for the performance of cable blowing is the long 
extending low axial force region. And in this region the cable sag 
is small compared to the duct sag in case the latter experienced a 
temperature increase after initial installation of the duct. 

One might question whether the cable does experience 
excess friction when simply following the bottom of the 
undulating duct without experiencing normal forces from the duct 
to bend it. Indeed there is no bending stiffness friction like WB in 
(14). But, dissipation of the continuously bent cable causes 
effective friction, as is known from pulling cables over rollers. 
Here effective friction is known to increase with roller distance 
(so is not caused by friction in the rollers itself). The friction of 
the continuously bent cable in the duct will be less when most of 
the cable sag is supported by the duct with smaller sag. Blowing 
tests are proposed to find all details. 

When the cable is floated in with water instead of blown in 
with air, the effective weight of the cable becomes less. Besides 
that the sag of the duct increases because it becomes heavier, also 
the sag of the cable decreases. Now the calculations without cable 
sag become relatively more accurate.  

2.7 Example with Floating 
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Figure 8. Example of floating length L as a function of 
span d for a 20 mm cable in the 32/26 mm duct for the 

cases (floating, so only water filled) of Figure 6 

Buoyancy makes that floating with water reduces the effective 
weight of the cable, having an advantageous effect on the distance 
that can be reached. It shall be noted that for long lengths the water 
speed is low: for the example with 20 mm cable in 32/26 mm duct a 
water pressure of 1 bar per km gives a water speed of 16 m/min (for 
a 40/33 mm and 50/40 mm duct that would be 24 and 29 m/min, 
respectively). Equation (19) is only valid for a water speed >> cable 
speed. Calculation is done with this condition, bearing in mind that 
extra water pressure is needed on top of the 12 bar in the example to 
give the extra water speed difference with the cable. As this requires 
extra force to push the cable inside the pressure zone calculation is 
done with a bit lower remaining pushing force of 377 N (exactly 

”back pressure force” for the 12 bar in the example), so Fc = 0. 
Equations (12), (13) and (19) can then (for dFc/dx = 0, i.e. Fc 
remains zero) be simplified to: 

2 24

 



c d

B

D D p
L

f W W
       (20)  

The results are shown in Figure 8. For small span d, where the sag 
Sd is still smaller than the free space of the cable in the duct, the 
calculated floating length is 51.8 km for the treated example! This 
supports the large distance of already 12.4 km found in practice for 
floating in a trajectory without many (sharp) bends [3]. Here a water 
pressure of 20 bar was used and the cable came out with 50 m/min. 

As soon as the sag Sd becomes larger than the free space of the 
cable in the duct, the floating length decreases rapidly. When there 
was no pre-tension on the duct during installation, the floating 
length drops to about 6.26 km for the worst case span of 2.4 m. 
When the duct is cooled there is no such local minimum, only a 
hump, and the minimum is 10.5 km for a span of 8 m. When a pre-
tension of 300 N is used during installation of the ducts the floating 
lengths are always longer than 20 km (and this is again in a local 
minimum).  

Creep can spoil the beneficial effect of pre-tensioning, not 
further treated in this paper. But, in all cases extremely good floating 
properties are to be expected when selecting a span d below the 
critical value of 1.6 m for this example (and proportionally larger for 
larger ducts). Note that in such favorable conditions excess pushing 
forces reach far. That explains that in some favorable floating 
installations the cable speed remains high and the cable comes soon 
after the first water comes out. That is also what occurred in [3]. 

3. Conclusions 
From the above it might become clear that exact calculation of the 
reduction in blowing and floating length for a duct fixed at regular 
intervals is even more complex than treated so far. However, some 
rules of thumb follow from the analysis: 

- When the duct is in an environment of constant temperature 
the blowing distance is hardly affected for span < 2 m. 

- When the duct is in an environment of constant temperature 
and hung under sufficient axial tensional force the blowing 
distance is also hardly affected when larger spans are used. 

- When the duct is in an environment where the temperature 
varies (e.g. under bridges) the blowing distance might drop 
significantly (by ~1/3 in the treated example) already at small 
spans around 1 m (around the buckling length of the duct when 
under a pushing force equivalent to the force generated by 
thermal expansion). For larger spans the blowing distance does 
not anymore further drop fast, might even recover a bit.  

- The above phenomenon might occur not only when the 
temperature during cable installation is higher than that during 
installation of the duct, the combination of creep and 
temperature variation might also cause the same for favorable 
installation temperatures. 

- For large spans the effect of temperature becomes less, 
especially for low initial axial force in the duct. 

- When the cable is floated (with water) instead of blown (with 
air) all parameters change (the duct becomes heavier, the cable 
effectively lighter, but the water flow can also influence the 
temperature, when cooling reducing the sag of the duct).  



- Floating lengths can be extremely high (51.8 km in example). 
In the worst case (span 2.4 m, no pre-tension, no cooling) still 
even 6.26 km is reached. Selection of a suitable span gives 
much better results, even better when pre-tensioning the duct. 
Bad situations can often be saved by cooling with the water. 

- The above rules are valid for the example of the 32/26 mm 
duct. When the duct becomes larger (the cable scaling with the 
duct) the mentioned span scales proportionally and the forces 
quadratic with the duct diameter.  

4. Acknowledgments 
Special thanks to Vitor Goncalves (Plumettaz, Switzerland) for 
triggering the work of this paper and to Jean Fehlbaum (Nexans, 
Switzerland) for his involvement in the 12.4 km floating project [3] 
where duct clamping was designed with help of theory of this paper. 

5. References 
[1] S. Sundberg, "Microduct test in Sweden 2015", Trafikverket 

presentation 2015. 

[2] F. Müller, "Stolzer Einblaserfolg in Europas höchstgelegenem 
Tal", Rehau publication 7500DE 03.19. 

[3] J. Fehlbaum, "World record: installation of 13 km of fiber optic 
cable in a single length through water floating technique", 
publication 2019.  

[4] W. Griffioen, W. Greven, "Protected Microducts, Overview 
and Current Trends", Proc 57th IWCS (2008) 152-159. 

[5] W. Griffioen, C. van 't Hul, I. Eype, T. Sugito, W. Greven, T. 
Pothof, R. Khiar, L.K. de Jonge, “Microduct cabling at 
CERN”, Proc 53rd IWCS (2004) 204-211. 

[6] W. Griffioen, H.G. Nobach, G. Plumettaz, "Theory, software, 
testing and practice of cable in duct installation", Proc 55th 

IWCS (2006) 357-365. 

[7] Jeremy Tatum, “Classical mechanics” Chapter 18, University 
of Victoria, LibreTexts. 

[8] I.N. Bronstein, K.A. Semendjajew, “Taschenbuch der 
Mathematik”, BSB B.G. Teubner Verlagsgesellschaft, 
Leipzig, und Verlag Nauka, Moskau, 1979. 

Appendix A: Numerical Analysis Duct 
Fixed at Regular Intervals 

 
Figure A1. Model for analyzing duct hanging on clamps. 

For details see text. 

In Figure A1 a single duct span is shown. Normal forces Fn from 
the clamps on the duct balance the total of the distributed weight 
Wd of the duct and cause bending of the duct and bending 
moments M0 at the clamps. At the same time the axial pulling 
force F in the cable counteracts the bending, also influencing the 
elastic line of the cable. To analyze this elastic line it is sufficient 
to only consider normal forces acting on a single span. The total 

of the distributed weight Wd in the span is equal to the normal 
force Fn at the ends. Because neighboring spans also start with a 
normal force only half of this force belongs to the analyzed span:  

1
2n dF W d                    (A1) 

For calculation of the normal forces, only the left half of the span 
is taken. In this case it is sufficient to consider the forces and 
bending moment at x=0: 

0
0

x

n dM M F x W ds yF            (A2) 

Integration of (A2) and using (A1) gives: 

21 1
0 2 2d dM M W dx W x Fy          (A3) 

To obtain the elastic line, the following equation must be solved 
for the curvature Kd of the duct [8]: 
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                   (A4) 

Here Bd is the stiffness of the duct. Combining (A3) and (A4) the 
following equation is obtained, solved with boundary conditions 
y(0) = 0, y´(0) =  0 and y´(d) = 0: 

 
3
2

21 1
0 2 2

2 1

  


 

d d

d

M W dx W x Fyy

B
y

               (A5) 

In the case that the pulling force F is zero and for small y´ (A5) 
this becomes: 

21 1
0 2 2d d

d

M W dx W x
y

B

 
                   (A6) 

Integration with boundary conditions y´(0) = y´(d/2) = 0 gives: 
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Integration again with boundary condition y(0) = 0 gives y as a 
function of x as well as the sag SdB = y(d/2): 
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Here only stiffness Bd counts. For the case that the stiffness B can 
be neglected and the pulling force F rules the elastic line, the 
solution for the catenary follows from [7], again for small y´: 
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dF
W d

S
F

          (A9) 

In case both effects from stiffness B and pulling force F are 
present (A5) is solved numerically, starting with x = y = y´ = 0. 
The value of the (negative) bending moment M0 is still unknown. 
It is varied until y (d) = 0 or y´(d/2) = 0. For the example of the 
32/26 mm HDPE duct with weight Wd of 2.52 N/m and stiffness 
Bd of 23.2 Nm2 with span d of 4 m a sag Sd of 72.5 mm is found 
for a force F of 0 N (and M0 of -3.36 Nm), see Figure A2. This is 
close to the value (72.4 mm) which follows from (A8). For a force 
F of 50 N a sag Sd is found of 39.1 mm (and M0 of -2.28 Nm), see 
also Figure A2. This is less than the value SdF of 100.8 mm for 
zero stiffness which would follow from (A9). In Figure A2 also 
the lines are drawn for other values of the force F. 
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Figure A2  Numerically calculated sag y (x) for duct with 
weight W = 2.52 N/m and stiffness Bd = 23.2 Nm2 for 

different pulling forces F and span d of 4 m. 
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