

Projects with Remote Installation ("Tube Post") of Energy Cables in Ducts

Willem Griffioen, Christophe Gutberlet,
Alexandre Uhl, Gregory Laurent, Selim, Grobety,
Plumettaz SA, Bex, Switzerland

Contents

- Introduction
- Benefits Cable in Duct (Pipe)
- Installation Cable in Duct (Pipe)
- First FreeFloating Trial
- Copenhagen Project
- Offshore Wind Farm Project
- Limits of FreeFloating
- Conclusions

Introduction

- Cable Installation
 - Aerial
 - Underground
 - Direct Buried
 - In Ducts ←
- Installation in Ducts using Water under Pressure
 - One step installation, all material and labour one side of duct
 - Long installation lengths, friendly to cable and duct
 - Most appealing: FreeFloating, like "Tube Post"
 - Tested in France and 2 projects in Denmark, one offshore
 - From any convenient launch location to any desired destination
 - Almost no limit of length over which cable can be transported

Benefits Cable in Duct (Pipe)

General

- Cable removed or replace without digging
- Protection of pipe even better than armouring
- Option of FreeFloating

Land

- No need to keep trench open long length and time
- Offshore
 - Standard land cables, save on costs, readily available
 - AC losses minimized
 - Low (zero) risk cable damage during installation
 - Position duct monitored by Intelligent Pigging

Pulling (winch)

- Pulling (winch)
- Pushing

- Pulling (winch)
- Pushing
- Blowing

- Pulling (winch)
- Pushing
- Blowing
- Floating

- Pulling (winch)
- Pushing
- Blowing
- Floating
- WaterPushPulling

- Pulling (winch)
- Pushing
- Blowing
- Floating
- WaterPushPulling
- FreeFloating

The new techniques

Installation Cable in Duct (Pipe) FreeFloating explained

- Install cable 1 with WaterPushPulling
- Place rear pig and close duct (with extension)
- Flow further (only water, loose from machine) (extension at front for cable overlength)

Installation Cable in Duct (Pipe) FreeFloating explained

- Remove duct connection and extension and pigs
- Place new duct extension halfway
- Install cable 2 with WaterPushPulling

Installation Cable in Duct (Pipe) FreeFloating explained

- Remove all extensions, pigs and equipment
- All cables installed
- Can also be done for more than 2 sections
- Difficult to reach locations avoided!

First FreeFloating Trial

• It really works!

Copenhagen Project

Copenhagen Project

- 2 sections, 1695 m and 1574 m
 - 3 parallel ducts 160/140 mm
 - 3 cables 132 kV, 92 mm,
 8.7 kg/m, 36 kN max force
 - 1574 m cables FreeFloated via 1695 m section
- Installing 1st cable,
 FreeFloating to next section,
 installing 2nd cable behind 1st,
 done in 1 day!

Copenhagen Project

- Nessie not only legend!
- Done in Denmark

FreeFloat to end,2 loops

Ready

Nissum Bredning (Denmark)

- 4 "near shore" wind turbines, each 7 MW
- Same cables for export and inter array
- 3 cables 72 kV, 630 mm² Al, 68.1 mm, 4.6 kg/m, maximum force 18.9 kN
- Bundle of 4 HDPE pipes 110/90 mm with steel ballast
- All 12 cables installed FROM LAND!
 - Except 2 from vessel (was not needed, just to prove!)
 - 3 techniques used for installation:
 - WaterPushPulling
 - Floating
 - FreeFloating
 - Installation also with bad weather (Beaufort wind force 8!)
 - Installed with up to 28 m/min (FreeFloating)

- Elevation differences (every 10 m = 1 bar)
- Many sections might give too many bars
 - Downhill: too much pressure on duct
 - Solved by using pig with pressure safety valve
 - Uphill: Not enough pressure to install
 - Solved by using booster pumps at intermediate locations
- No problem for offshore
 - Launch and end point elevation do not differ a lot
 - Pressure can get high at deep dips, but is same for inside and outside duct

- What is the maximum (safe) cable speed?
 - Water hammer (water speed $v \ge$ cable speed v_c)?
 - Joukowsky formula for pressure p of water hammer:

$$p = \rho c V$$

- ρ = cable density (1000 kg/m³)
- c = speed of sound in water (1500 m/s)
- Correction duct expansion: 23% for HDPE duct SDR 11
- 60 m/min would give 15 bar (without correction), with correction even much less. By far not limiting speed of water flow

- What is the maximum (safe) cable speed?
 - Sudden stop cable: lots of inertia! What is force F_c ?
 - Calculation analogously water hammer (not entire cable stops at same time, cable compresses and buckles, amount of stopped cable travels backwards like wave):

$$F_c = \sqrt{\frac{m_c}{\frac{1}{k_c} + \frac{c_b (D_d - D_c)^2}{4\pi^2 B}}} \cdot v_c$$

• m_c = cable mass / unit length, B = cable stiffness, k_c = cable spring constant, D_c = cable diameter, D_d = duct diameter, c_b = constant (2.23 for sine buckling)

- What is the maximum (safe) cable speed?
 - Example: Nissum Bredning cable and duct with cable speed 60 m/min \rightarrow F_c = 12.9 kN
 - Backwards wave travels with speed 2800 m/min!
 (compare with speed of sound in water of 1500 m/min)
 - Max force on cable = 18.9 kN, so still okay
 - Sidewall pressure and bending radius of cable under buckling far away from critical values
 - Cable can also be suddenly blocked at inlet, no buckling to "absorb" wave (formula with $c_b = 0$) $\rightarrow F_c = 16.6$ kN
 - Forward wave now travels with even 3600 m/min!

- Cable and pig (!) hit obstacle
- "Buckle wave" and water hammer wave start
- Waves travel backwards until rear cable end
 - During wave travelling max force and pressure (at wave part)
 - Buckle force and pressure (pig) force do not add
 - Buckle wave travels faster than pressure wave

 What is the maximum speed at which we can pump the water (cable) through? Given by Blasius:

$$v = 2.9 \frac{D_d^{5/7}}{\mu^{1/7} \rho^{3/7}} \left(\frac{p}{L}\right)^{4/7}$$

- μ = dynamic viscosity of water (10⁻³ Pas)
- *L* = length duct
- Example: 160/130 mm duct, 40 km long
 - Speed v of 40 m/min (one cable takes net 16.7 hours) \rightarrow
 - Pressure p of 12.4 bar needed, just to pump the water through
 - Remaining pressure can be used to FreeFloat the cable
 - Larger ducts: higher speed and/or longer length possible

- Long lengths → different duct diameter might exist (outer edges wind farm with smaller cables / ducts)
- Cable passes duct change → pig must be changed
- How to handle different flows?
- How to optimize pressure?

$$p_m = \frac{D_1^2 p_1 + D_2^2 p_2}{D_1^2 + D_2^2}$$

- We can install (bring) cables over long length and through ducts with differing diameters
- No need to store heavy cable drums on platforms!

Conclusions

- FreeFloating cable installation technique proved to work in trial and 2 projects, one land, one offshore
- Works from any suitable launch location to any desired destination, avoiding difficult to reach places
- Copenhagen project: from suburb to city center possible
- Offshore wind farm: from land to offshore turbines (also at bad weather, like Beaufort windforce 8)
- FreeFloating can be done safely at high speed and over long lengths
 - e.g. 40 km with 40 m/min in 160/130 mm ducts
 - larger ducts → longer lengths and/or higher speeds

Thanks for Your Attention!

